Finitely-Oriented Shortest Paths in the Presence of Polygonal Obstacles
نویسنده
چکیده
Given a set of non-intersecting simple polygons, a set of points in the plane, and a set of xed orientations, we compute a graph such that for any two input points there exists a shortest path in G whose length equals the length of a shortest path between these points in the plane that does not intersect any polygon and that consists only of line segments of the given orientations. This graph may serve as a basis not only to compute shortest paths but also for various other network applications, like e.g. minimum spanning trees or Steiner minimal trees. We show that for f xed orientations and n input points the size of the graph G is O(f n log n) and that G can be computed in time O(f n log n).
منابع مشابه
An Optimal Algorithm for L1 Shortest Paths Among Obstacles in the Plane (Draft)
We present an optimal Θ(n log n) algorithm for determining shortest paths according to the L1 (L∞) metric in the presence of disjoint polygonal obstacles in the plane. Our algorithm requires only linear O(n) space to build a planar subdivision (a Shortest Path Map) with respect to a fixed source point such that the length of a shortest path from the source to any query point can be reported in ...
متن کاملShortest paths to obstacles for a polygonal car-like robot
This paper shows how to compute the nonholonomic distance between a car-like robot of polygonal shape and polygonal obstacles. Adopting an optimal control point of view, we use transversality conditions to get information about the structure of paths that are admissible solutions. With this information, the problem of minimizing the length of a path that is, in general, function of three parame...
متن کاملAn Optimal Algorithm for Euclidean Shortest Paths in the Plane
We propose an optimal-time algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(n logn) and requires O(n logn) space, where n is the total number of vertices in the obstacle polygons. The algorithm is based on an eecient implementation of wavefront propagati...
متن کاملComputing L1 Shortest Paths among Polygonal Obstacles in the Plane
Given a point s and a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane, we present a new algorithm for building an L1 shortest path map of size O(n) in O(T ) time and O(n) space such that for any query point t, the length of the L1 shortest obstacleavoiding path from s to t can be reported in O(log n) time and the actual shortest path can be found in additional ...
متن کاملGeneralized Source Shortest Paths on Polyhedral Surfaces
We present an algorithm for computing shortest paths and distances from a single generalized source (point, segment, polygonal chain or polygon) to any query point on a possibly non-convex polyhedral surface. The algorithm also handles the case in which polygonal chain or polygon obstacles on the polyhedral surface are allowed. Moreover, it easily extends to the case of several generalized sour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991